
xtp_job_control Documentation

Felipe Zapata

Mar 09, 2020

Contents:

1 Installation 1
1.1 Requirements . 1

2 Tutorial 3
2.1 Available Workflows . 3
2.2 Running a workflow . 4
2.3 Votca calculators options . 4

3 Workflow components 7
3.1 runner . 8

4 Creating Your Own Workflow 9
4.1 Command line wrappers . 9

5 XML Editor 11
5.1 XML editing function . 11

6 Indices and tables 13

Index 15

i

ii

CHAPTER 1

Installation

To install the xtp_job_control library type the following command:

pip install git+https://github.com/votca/xtp_job_control@master

1.1 Requirements

the xtp_job_control packages assumes that you have already install the votca and that the binaries and libraries are
accessible.

Note: If you have install votca in a non-standard location, export the environment variable VOTCASHARE with the
absolute path to the Votca shared folder.

1

https://github.com/votca/votca/blob/master/share/doc/INSTALL.md
https://github.com/votca/votca/blob/master/share/doc/INSTALL.md

xtp_job_control Documentation

2 Chapter 1. Installation

CHAPTER 2

Tutorial

The xtp_job_control library contains a set of predifined workflows that workout of the box. But a user may also need
further capabilities over the xtp functionality, for those cases the xtp_job_control allows a user to extend or create
some missing functionality that can be integrated with the predefined workflows.

2.1 Available Workflows

The following family of workflows are defined in xtp_job_control:

• dftgwbse

• transport

• kmc

2.1.1 dftgwbse

The dftgwbse workflow performs either a point energy calculation (see energy input example) or geometry optimiza-
tion (see optimization input example) using the GW-BSE method, check the GW-BSE entry of the manual for furtner
information.

2.1.2 Transport

The transport workflow contains several steps to compute charge transport networks, using a combined coarse-grained
and stochastic approach (see input transport example). For further reading, see secion 2.10 of the manual.

2.1.3 kmc

The kmc worklow performs a hopping simulation of charge carriers using a kinetic Monte Carlo approach (see input
kmc example). For further information, see Chapter 2 of the manual.

3

https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/dftgwbse.py
https://github.com/votca/xtp_job_control/blob/master/tests/Methane/input_transport.yml
https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/kmc.py
https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/dftgwbse.py
https://github.com/votca/xtp_job_control/blob/master/tests/DFT_GWBSE/dftgwbse_CH4/input_dft_gwbse_CH4.yml
https://github.com/votca/xtp_job_control/blob/master/tests/DFT_GWBSE/dftgwbse_CO_geoopt/input_CO_geoopt.yml
https://en.wikipedia.org/wiki/GW_approximation
http://doc.votca.org/xtp-manual.pdf
https://github.com/votca/xtp_job_control/blob/master/tests/Methane/input_transport.yml
https://github.com/votca/xtp_job_control/blob/master/tests/Methane/input_transport.yml
http://doc.votca.org/xtp-manual.pdf
https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/kmc.py
https://en.wikipedia.org/wiki/Kinetic_Monte_Carlo
http://doc.votca.org/xtp-manual.pdf

xtp_job_control Documentation

2.2 Running a workflow

A workflow is run by executing the following command in the terminal:

run_xtp_workflow.py --input tests/DFT_GWBSE/dftgwbse_CH4/input_dft_gwbse_CH4.
yml

Where run_xtp_workflow.py is the python script that read, process and run the workflow; and the input is a file in
yaml format.

After the command finishes it returns another yaml file called result_<workflow>_<time-stamp>.yml containing a
summary of the workflow results and a file called xtp.log with the standard output and error returned by the Votca-
XTP calculators.

2.2.1 How it works

First, the library scan the input and checks its validity (using a set of predifined schemas), then a dependency graph_
is built between the different jobs involved in the workflow. This graph allows to run in parallel those jobs that do not
dependent on each other, while creating explicit /dependencies between jobs that need to run in a sequential mode,
injecting the ouput of one job as input of the next one. Finally, the jobs are running in different folders while the
dependecies between them are automatically track.

Both the construction and execution of the dependency graph is carried out by the Noodles library. When the
run_xtp_workflow.py command is invoked, Noodles traverses the graph of job dependencies and checks against
its internal database for a reference to the job results, if such reference does not exist the job is executed and the re-
sulting output metainformation is stored in the database.

If the execution of the workflow is stopped by the user or fails for technical reasons, the generated database with
metadata can be used to restart the workflows. _Noodles will walk through the dependencies tree in the same way as
when started from scratch, but will query the database for already existing results and execute only the tasks that were
not yet successfully completed.

2.3 Votca calculators options

The arguments and default values for running simulations with Votca-XTP are define in different xml files, leaving
at the VOTCASHARE folder. When an XTP command is invoked, Votca-XTP reads from these xml files the available
values. Since, xml files can have nested xml files it is a non-trivial task to setup correctly the simulation values for a
given simulation.

In order to improved the aforemention situation, the xtp_job_control library allows the users to create a section called
votca_calculators_options in the input file. Every subsection on it, corresponds to an xml file and subsequently
subsections are values that the user wish to change. For example, see the next snippet taken from the input example
for a single point energy calculation: .. code-block:: yaml

votca_calculators_options:

dftgwbse:

dftpackage: xtpdft.xml

xtpdft: threads: 1

It saids that in the dftgwbse xml option file, the argument dftpackage must be set equal to xtpdft.xml. While in the
xtpdft xml option file, the number of threads should be set to 1.

4 Chapter 2. Tutorial

https://pyyaml.org/wiki/PyYAMLDocumentation
https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/input/schemas.py
http://nlesc.github.io/noodles/
http://nlesc.github.io/noodles/
https://en.wikipedia.org/wiki/XML
https://github.com/votca/xtp_job_control/blob/master/tests/DFT_GWBSE/dftgwbse_CH4/input_dft_gwbse_CH4.yml

xtp_job_control Documentation

2.3.1 How it works

Before the jobs are executed, all the Option files in the VOTCASHARE folder are copy to a temporary folder. These
temporary files are combined with votca_calculators_options provided by the users, generating a new set of files
containing the options to call the Votca-XTP functionality.

2.3. Votca calculators options 5

xtp_job_control Documentation

6 Chapter 2. Tutorial

CHAPTER 3

Workflow components

As mentioned in the tutorial, Noodles is the workflow engine used both to create the dependency graph between the
jobs and to run such graph. Noodles provides a python decorator call schedule that when applied to a function or
method returns a promise or future object (see noodles schedule tutorial).

The xtp_job_control library, wraps the different XTP calculators into their own functions decorated with schedule.
These scheduled functions can then be organized in different workflows by injecting the output of one function as the
input of another function. For example, the single point energy workflow is implemented like:

def dftgwbse_workflow(options: dict) -> object:

create results object
results = Results({})

Run DFT + GWBSE
results['dftgwbse'] = run_dftgwbse(results, options)

Compute partial charges
results['partialcharges'] = run_partialcharges(

results, options, promise=results["dftgwbse"]["system"])

output = run(results)

In the previous example, both functions run_dftgwbse and run_partialcharges are scheduled functions im-
plemented in the xtp_workflow module. Results, is a subclass of the Python dictionary extended with functionality
to handle the jobs booking.

Notice that jobs are stored as nodes in the results dictionary and also the promised object
results['dftgwbse'] contains a system property that can be passed to a partial charges calculator.

The resulting dependency graph in this particular case, contains two nodes, one for each job and a edge representing
the system dependency.

7

http://nlesc.github.io/noodles/
http://nlesc.github.io/noodles/
http://nlesc.github.io/noodles/sphinxdoc/html/eating.html
https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/xtp_workflow.py

xtp_job_control Documentation

3.1 runner

The run function in the previous snippet is implemented in the runner module and encapsulate the noodles details.
Noodles offers a different variety of runner for different architectures and purposes (see runners). Currently, the
xtp_job_control library use a parallel multithread runner with an sqlite interface for storing the jobs metadata.

8 Chapter 3. Workflow components

https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/runner.py
http://nlesc.github.io/noodles/
http://nlesc.github.io/noodles/sphinxdoc/html/development.html#module-noodles.run.scheduler
https://www.sqlite.org/index.html

CHAPTER 4

Creating Your Own Workflow

if the available workflows do not provided simulation that you want to perform, you can create your own worklow by
glueing together the available functions at the xtp_workflow.

If non of the functions at the xtp_workflow modules satifies your needs, you can create your own
function using the xtp_job_control.workflows.workflow_components.call_xtp_cmd() and
xtp_job_control.workflows.workflow_components.call_xtp_cmd(). The following code snip-
pet, ilustrates the creation of a call to the xtp_map command using a promised system argument provided by another
job called job_system.

results = Results({})

Other jobs executed here
...

args = create_promise_command(
"xtp_map -t {} -c {} -s {} -f {}",
topology, trajectory,
results['job_system']['system'], path_state)

results['job_state'] = call_xtp_cmd(args, workdir, expected_output={'state': 'state.
→˓sql'})

the expected_output argument in the function, search for output files created by the command. In the current
case, the xtp_map command generates a file called state.sql. The ouput files can be access by other jobs using the
name provided in the dictionary. For example, the state.sql is available using the following notation:

state_file = results['job_state']['state']

4.1 Command line wrappers

The following functions create an schedule call to a Votca-XTP command.

9

https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/xtp_workflow.py
https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/xtp_workflow.py

xtp_job_control Documentation

xtp_job_control.workflows.workflow_components.call_xtp_cmd(cmd: str, workdir: str,
expected_output: dict
= None)

(scheduled) Run a bash cmd in the workdir folder.

It searches for a list of expected_output files.

xtp_job_control.workflows.workflow_components.create_promise_command(string:
str,
*args)
→ str

(scheduled) Use a string as template command and fill in the options using possible promised args

10 Chapter 4. Creating Your Own Workflow

CHAPTER 5

XML Editor

The xtp_job_control library offers different funcionality to edit and manipulates the entries of the xml option files.

5.1 XML editing function

Funcionality to edit the content of the xml option files for Votca-XTP.

xtp_job_control.xml_editor.edit_xml_options(sections: dict, path_optionfiles: path-
lib.Path)→ Dict[KT, VT]

Edit section in the xml files give by sections.

Go through the options file: sections dictionary and edit the corresponding XML file by replacing sections in
the XML file.

xtp_job_control.xml_editor.edit_xml_file(path: str, xml_file: str, sections: Dict[KT, VT])
→ str

Parse the path XML file.

Replace the nodes given in sections in the XML tree. Finally write the XML tree to the same file.

xtp_job_control.workflows.workflow_components.edit_options(options: Dict[KT,
VT], names_xml_files:
List[T],
path_optionfiles:
str)→ Dict[KT, VT]

(scheduled) Edit a list of XML files names_xml_files that are located in the path_optionfiles using a set of
user-defined options.

11

xtp_job_control Documentation

12 Chapter 5. XML Editor

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

13

xtp_job_control Documentation

14 Chapter 6. Indices and tables

Index

C
call_xtp_cmd() (in module

xtp_job_control.workflows.workflow_components),
9

create_promise_command() (in module
xtp_job_control.workflows.workflow_components),
10

E
edit_options() (in module

xtp_job_control.workflows.workflow_components),
11

edit_xml_file() (in module
xtp_job_control.xml_editor), 11

edit_xml_options() (in module
xtp_job_control.xml_editor), 11

15

	Installation
	Requirements

	Tutorial
	Available Workflows
	Running a workflow
	Votca calculators options

	Workflow components
	runner

	Creating Your Own Workflow
	Command line wrappers

	XML Editor
	XML editing function

	Indices and tables
	Index

