

Welcome to xtp_job_control’s documentation!

Contents:

	Installation
	Requirements

	Tutorial
	Available Workflows

	Running a workflow

	Votca calculators options

	Workflow components
	runner

	Creating Your Own Workflow
	Command line wrappers

	XML Editor
	XML editing function

Indices and tables

	Index

	Module Index

	Search Page

Installation

To install the xtp_job_control library type the following command:

pip install git+https://github.com/votca/xtp_job_control@master

Requirements

the xtp_job_control packages assumes that you have already install the votca [https://github.com/votca/votca/blob/master/share/doc/INSTALL.md] and
that the binaries and libraries are accessible.

Note

If you have install votca [https://github.com/votca/votca/blob/master/share/doc/INSTALL.md] in a non-standard location, export the environment variable
VOTCASHARE with the absolute path to the Votca shared folder.

Tutorial

The xtp_job_control library contains a set of predifined workflows that workout
of the box. But a user may also need further capabilities over the xtp functionality,
for those cases the xtp_job_control allows a user to extend or create some missing
functionality that can be integrated with the predefined workflows.

Available Workflows

The following family of workflows are defined in xtp_job_control:

	dftgwbse [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/dftgwbse.py]

	transport [https://github.com/votca/xtp_job_control/blob/master/tests/Methane/input_transport.yml]

	kmc [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/kmc.py]

dftgwbse

The dftgwbse [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/dftgwbse.py] workflow performs either a point energy calculation (see energy [https://github.com/votca/xtp_job_control/blob/master/tests/DFT_GWBSE/dftgwbse_CH4/input_dft_gwbse_CH4.yml] input example) or
geometry optimization (see optimization [https://github.com/votca/xtp_job_control/blob/master/tests/DFT_GWBSE/dftgwbse_CO_geoopt/input_CO_geoopt.yml] input example) using the GW-BSE [https://en.wikipedia.org/wiki/GW_approximation] method, check the GW-BSE
entry of the manual [http://doc.votca.org/xtp-manual.pdf] for furtner information.

Transport

The transport [https://github.com/votca/xtp_job_control/blob/master/tests/Methane/input_transport.yml] workflow contains several steps to compute charge transport networks, using a combined
coarse-grained and stochastic approach (see input transport [https://github.com/votca/xtp_job_control/blob/master/tests/Methane/input_transport.yml] example). For further reading, see secion 2.10 of the manual [http://doc.votca.org/xtp-manual.pdf].

kmc

The kmc [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/kmc.py] worklow performs a hopping simulation of charge carriers using a kinetic Monte Carlo [https://en.wikipedia.org/wiki/Kinetic_Monte_Carlo] approach (see input kmc example).
For further information, see Chapter 2 of the manual [http://doc.votca.org/xtp-manual.pdf].

Running a workflow

A workflow is run by executing the following command in the terminal:

run_xtp_workflow.py --input tests/DFT_GWBSE/dftgwbse_CH4/input_dft_gwbse_CH4.yml

Where run_xtp_workflow.py is the python script that read, process and run the workflow; and the input is a file
in yaml [https://pyyaml.org/wiki/PyYAMLDocumentation] format.

After the command finishes it returns another yaml file called result_<workflow>_<time-stamp>.yml containing a
summary of the workflow results and a file called xtp.log with the standard output and error returned by
the Votca-XTP calculators.

How it works

First, the library scan the input and checks its validity (using a set of predifined schemas [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/input/schemas.py]), then a dependency graph_ is
built between the different jobs involved in the workflow. This graph allows to run in parallel those jobs that do not
dependent on each other, while creating explicit /dependencies between jobs that need to run in a sequential mode, injecting
the ouput of one job as input of the next one. Finally, the jobs are running in different folders while the dependecies between
them are automatically track.

Both the construction and execution of the dependency graph is carried out by the Noodles [http://nlesc.github.io/noodles/] library.
When the run_xtp_workflow.py command is invoked,
Noodles [http://nlesc.github.io/noodles/] traverses the graph of job dependencies and checks against its internal database for a reference to the job results,
if such reference does not exist the job is executed and the resulting output metainformation is stored in the database.

If the execution of the workflow is stopped by the user or fails for technical reasons, the generated database with metadata
can be used to restart the workflows. _Noodles will walk through the dependencies tree in the same way as when started from scratch,
but will query the database for already existing results and execute only the tasks that were not yet successfully completed.

Votca calculators options

The arguments and default values for running simulations with Votca-XTP are define in different xml [https://en.wikipedia.org/wiki/XML] files, leaving
at the VOTCASHARE folder. When an XTP command is invoked, Votca-XTP reads from these xml files the available values.
Since, xml files can have nested xml files it is a non-trivial task to setup correctly the simulation values for a given simulation.

In order to improved the aforemention situation, the xtp_job_control library allows the users to create a section
called votca_calculators_options in the input file. Every subsection on it, corresponds to an xml file and subsequently
subsections are values that the user wish to change. For example, see the next snippet taken from
the input example for a single point energy [https://github.com/votca/xtp_job_control/blob/master/tests/DFT_GWBSE/dftgwbse_CH4/input_dft_gwbse_CH4.yml] calculation:
.. code-block:: yaml

	votca_calculators_options:

	
	dftgwbse:

	
	dftpackage:

	xtpdft.xml

	xtpdft:

	threads: 1

It saids that in the dftgwbse xml option file, the argument dftpackage must be set equal to xtpdft.xml. While
in the xtpdft xml option file, the number of threads should be set to 1.

How it works

Before the jobs are executed, all the Option files in the VOTCASHARE folder are copy to a temporary folder. These temporary
files are combined with votca_calculators_options provided by the users, generating a new set of files containing
the options to call the Votca-XTP functionality.

Workflow components

As mentioned in the tutorial, Noodles [http://nlesc.github.io/noodles/] is the workflow engine used both to create
the dependency graph between the jobs and to run such graph. Noodles [http://nlesc.github.io/noodles/] provides
a python decorator call schedule that when applied to a function or method returns
a promise or future object (see noodles schedule [http://nlesc.github.io/noodles/sphinxdoc/html/eating.html] tutorial).

The xtp_job_control library, wraps the different XTP calculators into their
own functions decorated with schedule. These scheduled functions can then
be organized in different workflows by injecting the output of one function
as the input of another function. For example, the single point energy workflow
is implemented like:

def dftgwbse_workflow(options: dict) -> object:

 # create results object
 results = Results({})

 # Run DFT + GWBSE
 results['dftgwbse'] = run_dftgwbse(results, options)

 # Compute partial charges
 results['partialcharges'] = run_partialcharges(
 results, options, promise=results["dftgwbse"]["system"])

 output = run(results)

In the previous example, both functions run_dftgwbse and run_partialcharges
are scheduled functions implemented in the xtp_workflow [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/xtp_workflow.py] module. Results, is
a subclass of the Python dictionary extended with functionality to handle the
jobs booking.

Notice that jobs are stored as nodes in the results dictionary and also
the promised object results['dftgwbse'] contains a system property that
can be passed to a partial charges calculator.

The resulting dependency graph in this particular case, contains two nodes, one
for each job and a edge representing the system dependency.

runner

The run function in the previous snippet is implemented in the runner [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/runner.py] module and encapsulate
the noodles details. Noodles [http://nlesc.github.io/noodles/] offers a different variety of runner for different architectures
and purposes (see runners [http://nlesc.github.io/noodles/sphinxdoc/html/development.html#module-noodles.run.scheduler]). Currently, the xtp_job_control library use a parallel multithread
runner with an sqlite [https://www.sqlite.org/index.html] interface for storing the jobs metadata.

Creating Your Own Workflow

if the available workflows do not provided simulation that you want to perform,
you can create your own worklow by glueing together the available functions
at the xtp_workflow [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/xtp_workflow.py].

If non of the functions at the xtp_workflow [https://github.com/votca/xtp_job_control/blob/master/xtp_job_control/workflows/xtp_workflow.py] modules satifies your needs, you
can create your own function using the xtp_job_control.workflows.workflow_components.call_xtp_cmd()
and xtp_job_control.workflows.workflow_components.call_xtp_cmd(). The following code snippet,
ilustrates the creation of a call to the xtp_map command using a promised system argument provided
by another job called job_system.

 results = Results({})

 # Other jobs executed here
 ...

args = create_promise_command(
 "xtp_map -t {} -c {} -s {} -f {}",
 topology, trajectory,
 results['job_system']['system'], path_state)

results['job_state'] = call_xtp_cmd(args, workdir, expected_output={'state': 'state.sql'})

the expected_output argument in the function, search for output files created by the command.
In the current case, the xtp_map command generates a file called state.sql. The ouput
files can be access by other jobs using the name provided in the dictionary. For example,
the state.sql is available using the following notation:

state_file = results['job_state']['state']

Command line wrappers

The following functions create an schedule call to a Votca-XTP command.

	
xtp_job_control.workflows.workflow_components.call_xtp_cmd(cmd: str, workdir: str, expected_output: dict = None)

	(scheduled) Run a bash cmd in the workdir folder.

It searches for a list of expected_output files.

	
xtp_job_control.workflows.workflow_components.create_promise_command(string: str, *args) → str

	(scheduled) Use a string as template command and fill in the options using
possible promised args

XML Editor

The xtp_job_control library offers different funcionality to edit and manipulates
the entries of the xml option files.

XML editing function

Funcionality to edit the content of the xml option files for Votca-XTP.

	
xtp_job_control.xml_editor.edit_xml_options(sections: dict, path_optionfiles: pathlib.Path) → Dict[KT, VT]

	Edit section in the xml files give by sections.

Go through the options file: sections dictionary
and edit the corresponding XML file by replacing
sections in the XML file.

	
xtp_job_control.xml_editor.edit_xml_file(path: str, xml_file: str, sections: Dict[KT, VT]) → str

	Parse the path XML file.

Replace the nodes given in sections in the XML tree.
Finally write the XML tree to the same file.

	
xtp_job_control.workflows.workflow_components.edit_options(options: Dict[KT, VT], names_xml_files: List[T], path_optionfiles: str) → Dict[KT, VT]

	(scheduled)
Edit a list of XML files names_xml_files that are located in the
path_optionfiles using a set of user-defined options.

Index

 C
 | E

C

 	
 	call_xtp_cmd() (in module xtp_job_control.workflows.workflow_components)

 	
 	create_promise_command() (in module xtp_job_control.workflows.workflow_components)

E

 	
 	edit_options() (in module xtp_job_control.workflows.workflow_components)

 	
 	edit_xml_file() (in module xtp_job_control.xml_editor)

 	edit_xml_options() (in module xtp_job_control.xml_editor)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to xtp_job_control’s documentation!

 		
 Installation

 		
 Requirements

 		
 Tutorial

 		
 Available Workflows

 		
 dftgwbse

 		
 Transport

 		
 kmc

 		
 Running a workflow

 		
 How it works

 		
 Votca calculators options

 		
 How it works

 		
 Workflow components

 		
 runner

 		
 Creating Your Own Workflow

 		
 Command line wrappers

 		
 XML Editor

 		
 XML editing function

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

